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Abstract—This paper presents a modified self-tuning 

fuzzy-neural controller in the applications nonlinear model 

reference control system. In order to make the controller have 

the adaptive control capability, the immediate system error 

( )(ke ) and error change ( )(ke ) are used to be the inputs for 

fuzzy-neural tuning mechanism. For simplifying the 

construction of fuzzy system, nine rules are used in the rule table. 

To demonstrate the superiority of the controller we developed, 

several nonlinear model reference control systems are studied 

and simulated. The simulation results clearly show that the 

self-tuning fuzzy-neural controller has quite promising potential 

in the real control applications. 
 

Index Terms—self-tuning, fuzzy-neural, controller, model 

reference 

 

I. INTRODUCTION 

  It is well known that conventional controller is usually 

designed based on a mathematical model of the system. In 

fact, to many real and practical control problems, the system’s 

information is unknown or the parameters of system are 

uncertain and might vary with time. Thus, it is very difficult to 

obtain the accurate models for these systems. Generally, in 

order to control the time-varying system effectively, the 

controller must be designed to have the adaptability. The 

relevant control parameters can be auto-tuned in accordance 

with the immediate performance of the system. 

  Due to the simplicity and superiority in the real control 

applications, fuzzy controller has been widely employed into 

many linear and nonlinear control systems, especially for the 

system whose information is uncertain and unknown [1]-[5]. 

Fuzzy controller could incorporate the useful human 

knowledge in the fuzzy mechanism. Basically, fuzzy control 

can be classified into nonadaptive (conventional) fuzzy 

control and adaptive fuzzy control. In nonadaptive fuzzy 

control, the relevant parameters of the fuzzy controller are 

fixed during its real-time operation. Therefore, a good and 

effective fuzzy controller is very difficult to be designed for a 

complicated system if the highly accurate performance is 

desired. Usually, trail-and-error is the method well known for 

the parameter decision in many nonadaptive fuzzy control 

applications. However, such a controller needs many 

adjustments if the performance is not satisfactory. The fuzzy 

rules and relevant parameters need to be re-turned or 

redesigned in a number of trial-and-error cycles until the 
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system’s performance reaches the expectation. 

  For enhancing the capability and feasibility of fuzzy 

controller, the fuzzy controller with adaptability has been 

studied widely. Many research articles are also proposed 

[6]-[8]. The main advantage of adaptive fuzzy control is the 

better performance can be achieved because the controller’s 

parameters could be adjusted to fit the environment changes. 

Since the strong learning capability and adaptability, neural 

network technique has been applied in the area of adaptive 

fuzzy control. A number of neural-fuzzy controllers with 

self-tuning algorithm are studied and presented [9]-[15]. 

However, the complicated structure and mass computations 

of neural network usually make the controller have the slower 

reaction power. 

  In this study, a modified self-tuning fuzzy-neural controller 

is developed. The controller’s structure and the number of 

fuzzy rules are simpler than the fuzzy-neural controller 

proposed in article [16]. The detailed description of 

fuzzy-neural controller will be presented in Section II. 

Section III shows some control system simulations by using 

the fuzzy-neural controller we proposed. The discussion and 

conclusion will be given in Section IV. 

II. THE MODIFIED FUZZY-NEURAL CONTROLLER 

The fuzzy-neural controller is modified from the controller 

presented in [16]. In this paper, three immediate system 

behaviors (error )(ke , error change )(ke , and the change of 

error change )(ke ) were used to be the inputs of 

fuzzy-neural model. However, we found that the impact of 

)(ke  on the controller is quite small. Thus, in the modified 

fuzzy-neural controller, only )(ke  and )(ke  are used as the 

inputs of fuzzy mechanism. The whole fuzzy-neural control 

system is presented in Fig. 1. 

 

 

In order to speed the reaction power of fuzzy-neural 

controller, only nine rules are taken to construct the rule table 

which is shown in Table 1. The membership functions of 

fuzzifier for )(ke  and )(ke  and defuzzifier for the force 
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Fig. 1 The structure of fuzzy-neural control system. 
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increment )(ku  are shown in Fig. 2 and Fig. 3. 

 

Table 1. The rule table of neural-fuzzy controller. 

 
 

 
 

 

 

For making the controller have the adaptability, the 

strength of firing rules and the singleton values of defuzzifier 

are designed to be adjustable. The whole fuzzy computational 

process is organized to be a neural model which is shown in 

Fig. 4. And, the steepest decent gradient method is used to 

derive the tuning algorithm. The adaptation law for the 

adjustable parameters is presented as follows [16]. 

 

 

 

 
 

 

 

Here, we denote )(kO  and )(kY  to be the desired and 

actual outputs of the system at time k. The force increment, 

)1()()(  kukuku  is the output of fuzzy-neural 

controller. )(ko  and )(kh  are the error terms of the output 

layer and hidden layer of fuzzy-neural model, respectively. 

Let   be the learning rate. Then, the adjustments of the firing 

rule’s strength )(kmn  and the value of n-th rule in the 

defuzzier )(R kn
 can be derived by the chain rule.  

 

Set the cost function as  
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Fig. 2 The membership functions of )(ke and )(ke . 

Fig. 4 The fuzzy-neural controller. 
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where,  
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is the normalization process of the firing strength.  

 

Define the error terms  
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Thus, the adjustments of )(R kn
 and )(kmn  can be 

expressed as  
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III. SIMULATIONS 

In this study, several model reference control systems are 

simulated. 

 

Simulation 1: 

 

A two-order unstable nonlinear system given by the 

following equations is considered.  
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The system is requested to follow a model given by 

 

)(01.0)(99.0)1( krkyky mm                                  (12) 

 

where, the reference input )(kr  is given by 

 

)059.0cos(2)007.0sin(5.0)( kkkr                                  (13) 

 

The system’s initial values are 0)0(1 x  0)0(2 x  and 

0)0( my . 

 

Fig. 5 is the superposition diagram of control results by 

using the fuzzy-neural controller proposed. It is clearly shows 

the controller we developed has a quite promising 

performance. 

 

 
 

 
Simulation 2: 

 

we consider a two-order nonlinear system given by the 

following equation. 
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The system will follow a model given by 
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Fig. 3 The membership function of )(ku . 

Fig. 5 The superposition diagram of control results  

on 1
st
 simulation. 

Dash line: the output of reference model 

Solid line: actual system’s output 
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)250/2sin()( kkuc                                                       (17) 

 

Fig. 6 shows the superposition diagram of control results. 

 

Simulation 3: 

 

A high-order nonlinear system is given by the following 

equation. 
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The plant is requested to follow the model given by 

 

)(1.0)1(2.0)(6.0)1( krkykyky mmm                  (19) 

 

where, 
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Fig. 7 presents the superposition diagram of control results.  

 

 
 

 
 

 

Simulation 4: 

 

Another high-order nonlinear system is given by the 

following equation. 

 

)(35.0
)1(1

5.2)1()(()(
35.0)1(

2
ku

ky

kykyky
ky 












 … (21) 

 

The plant will follow the model given by 
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Fig. 8 presents the superposition diagram of control results. 

 

 

Fig. 6 The superposition diagram of control results  

on 2
nd

 simulation. 

Dash line: the output of reference model 

Solid line: actual system’s output 

Fig. 7 The superposition diagram of control results  

on 3
nd

 simulation. 

Dash line: the output of reference model 

Solid line: actual system’s output 

Fig. 8 The superposition diagram of control results  

on 4
th

 simulation. 

Dash line: the output of reference model 

Solid line: actual system’s output 
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From the results shown in Fig. 6, Fig. 7 and Fig. 8, it can be 

clearly found that the fuzzy-neural controller we developed 

has the very good performances for three nonlinear systems 

either. 

 

IV. CONCLUSION  

In this paper, a modified fuzzy-neural controller with 

adaptability is proposed. Two influencing factors, the system 

error )(ke  and error change )(ke  are used to be the inputs 

of fuzzy mechanism. In the fuzzy mechanism we designed, 

only nine rules are taken to generate the control force. 

Compare with the traditional fuzzy controller, the structure of 

the whole fuzzy mechanism and the amount of computations 

have been greatly simplified. In other words, the reaction 

power of controller can be more enhanced. In order to make 

the controller have the adaptability to fit the environment 

changes, the whole fuzzy controller is designed to be a 

fuzzy-neural type. The strength of firing rules and the 

singleton values of defuzzifier are designed to be auto-turned 

in accordance with the system’s behaviors. Several nonlinear 

model reference control systems are simulated by using the 

fuzzy-neural controller developed. From the simulation 

results shown, it is clearly found that the fuzzy-neural 

controller do have the excellent ability to handle the 

complicated and nonlinear control problems. And, the 

controller we developed highly promotes the potential of 

fuzzy controller in the real adaptive control applications.  
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